Nano-Fractal Implants
In 2005, neuroscientist Armand R. Tanguay Jr. wowed the world with his bionic eye that attached to the retina and received images from a digital camera mounted on a pair of sunglasses. But the future of bionic eyes looks even stranger - physicist Richard Taylor is developing an “implant” made of self-assembling fractal-shaped nanomaterial that can mimic eye neurons.
The biggest problem with cameras is that they don’t provide information in the same structure that the eye is used to. Retinal neurons are branched, like a fractal pattern, and a camera sends signals in a straight line. When a camera is plugged into a blind person’s retina, most of the information is lost in the gap between machine and living tissue. That’s why nearly every retinal implant to this point results in a hazy, grainy, black-and-white image - far from the resolution achieved by the human eye.
Taylor’s “nanoflowers” would form a more appropriate connection when implanted in the retina. Since they more closely resemble naturally occurring neurons, they would be able to mesh almost seamlessly with the still-working parts of a blind person’s eye, letting the brain receive the full transmission from a camera.
The next step is building a camera that can see with the 127-megapixel resolution of the human eye. At that point, a blind person would have perfect vision.
Comments
Post a Comment